Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 102(4): 843-856, 2023 10.
Article in English | MEDLINE | ID: mdl-37455325

ABSTRACT

Chagas' disease affects approximately eight million people throughout the world, especially the poorest individuals. The protozoan that causes this disease-Trypanosoma cruzi-has the enzyme cruzipain, which is the main therapeutic target. As no available medications have satisfactory effectiveness and safety, it is of fundamental importance to design and synthesize novel analogues that are more active and selective. In the present study, molecular docking and the in silico prediction of ADMET properties were used as strategies to optimize the trypanocidal activity of the pyrimidine compound ZN3F based on interactions with the target site in cruzipain. From the computational results, eight 4-amino-5-carbonitrile-pyrimidine analogues were proposed, synthesized (5a-f and 7g-h) and, tested in vitro on the trypomastigote form of the Tulahuen strain of T. cruzi. The in silico study showed that the designed analogues bond favorably to important amino acid residues of the active site in cruzipain. An in vitro evaluation of cytotoxicity was performed on L929 mammal cell lines. All derivatives inhibited the Tulahuen strain of T. cruzi and also exhibited lower toxicity to L929 cells. The 5e product, in particular, proved to be a potent, selective (IC50 = 2.79 ± 0.00 µM, selectivity index = 31.3) inhibitor of T. cruzi. The present results indicated the effectiveness of drugs based on the structure of the receptor, revealing the potential trypanocidal of pyrimidines. This study also provides information on molecular aspects for the inhibition of cruzipain.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Animals , Molecular Docking Simulation , Chagas Disease/drug therapy , Catalytic Domain , Trypanocidal Agents/chemistry , Mammals
2.
Parasit Vectors ; 15(1): 194, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35668508

ABSTRACT

BACKGROUND: Components of the antioxidant defense system in Trypanosoma cruzi are potential targets for new drug development. Superoxide dismutases (SODs) constitute key components of antioxidant defense systems, removing excess superoxide anions by converting them into oxygen and hydrogen peroxide. The main goal of the present study was to investigate the genes coding for iron superoxide dismutase (FeSOD) in T. cruzi strains from an evolutionary perspective. METHODS: In this study, molecular biology methods and phylogenetic studies were combined with drug assays. The FeSOD-A and FeSOD-B genes of 35 T. cruzi strains, belonging to six discrete typing units (Tcl-TcVI), from different hosts and geographical regions were amplified by PCR and sequenced using the Sanger method. Evolutionary trees were reconstructed based on Bayesian inference and maximum likelihood methods. Drugs that potentially interacted with T. cruzi FeSODs were identified and tested against the parasites. RESULTS: Our results suggest that T. cruzi FeSOD types are members of distinct families. Gene copies of FeSOD-A (n = 2), FeSOD-B (n = 4) and FeSOD-C (n = 4) were identified in the genome of the T. cruzi reference clone CL Brener. Phylogenetic inference supported the presence of two functional variants of each FeSOD type across the T. cruzi strains. Phylogenetic trees revealed a monophyletic group of FeSOD genes of T. cruzi TcIV strains in both distinct genes. Altogether, our results support the hypothesis that gene duplication followed by divergence shaped the evolution of T. cruzi FeSODs. Two drugs, mangafodipir and polaprezinc, that potentially interact with T. cruzi FeSODs were identified and tested in vitro against amastigotes and trypomastigotes: mangafodipir had a low trypanocidal effect and polaprezinc was inactive. CONCLUSIONS: Our study contributes to a better understanding of the molecular biodiversity of T. cruzi FeSODs. Herein we provide a successful approach to the study of gene/protein families as potential drug targets.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Antioxidants , Bayes Theorem , Chagas Disease/parasitology , Humans , Phylogeny , Superoxide Dismutase/genetics , Superoxides , Trypanosoma cruzi/genetics
3.
Sci Rep ; 10(1): 13296, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764546

ABSTRACT

The molecular and serological methods available for Discrete Typing Units (DTU)-specific diagnosis of Trypanosoma cruzi in chronic Chagas disease present limitations. The study evaluated the performance of Human Chagas-Flow ATE-IgG1 for universal and DTU-specific diagnosis of Chagas disease. A total of 102 sera from Chagas disease patients (CH) chronically infected with TcI, TcVI or TcII DTUs were tested for IgG1 reactivity to amastigote/(A), trypomastigote/(T) and epimastigote/(E) antigens along the titration curve (1:250-1:32,000). The results demonstrated that "AI 250/40%", "EVI 250/30%", "AII 250/40%", "TII 250/40%" and "EII 250/30%" have outstanding accuracy (100%) to segregate CH from non-infected controls. The attributes "TI 4,000/50%", "EI 2,000/50%", "AVI 8,000/60%" and "TVI 4,000/50%" were selected for DTU-specific serotyping of Chagas disease. The isolated use of "EI 2,000/50%" provided the highest co-positivity for TcI patients (91%). The combined decision tree algorithms using the pre-defined sets of attributes showed outstanding full accuracy (92% and 97%) to discriminate "TcI vs TcVI vs TcII" and "TcI vs TcII" prototypes, respectively. The elevated performance of Human Chagas-Flow ATE-IgG1 qualifies its use for universal and TcI/TcVI/TcII-specific diagnosis of Chagas disease. These findings further support the application of this method in epidemiological surveys, post-therapeutic monitoring and clinical outcome follow-ups for Chagas disease.


Subject(s)
Chagas Disease/diagnostic imaging , Immunoglobulin G/blood , Serologic Tests , Trypanosoma cruzi/physiology , Adult , Chagas Disease/blood , Female , Humans , Male
4.
Extremophiles ; 24(3): 367-376, 2020 May.
Article in English | MEDLINE | ID: mdl-32157393

ABSTRACT

We identified cultivable fungi present in the glacial ice fragments collected in nine sites across Antarctica Peninsula and assessed their abilities to produce bioactive compounds. Three ice fragments with approximately 20 kg were collected, melted and 3 L filtered through of 0.45 µm sterilized membranes, which were placed on the media Sabouraud agar and minimal medium incubated at 10 °C. We collected 66 isolates classified into 27 taxa of 14 genera. Penicillium palitans, Penicillium sp. 1, Thelebolus balaustiformis, Glaciozyma antarctica, Penicillium sp. 7, Rhodotorula mucilaginosa, and Rhodotorula dairenensis had the highest frequencies. The diversity and richness of the fungal community were high with moderate dominance. Penicillium species were present in all samples, with Penicillium chrysogenum showing the broadest distribution. P. chrysogenum, P. palitans, and Penicillium spp. had trypanocidal, leishmanicidal, and herbicidal activities, with P. chrysogenum having the broadest and highest capability. 1H NMR signals revealed the presence of highly functionalized secondary metabolites in the bioactive extracts. Despite extreme environmental conditions, glacial ice harbours a diverse fungal community, including species never before recorded in the Arctic and Antarctica. Among them, Penicillium taxa may represent wild fungal strains with genetic and biochemical pathways that may produce new secondary bioactive metabolites.


Subject(s)
Bioprospecting , Arctic Regions , Fungi , Ice , Mycobiome , Penicillium
5.
World J Microbiol Biotechnol ; 33(3): 62, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28243983

ABSTRACT

The compounds terrein (1), butyrolactone I (2), and butyrolactone V (3) were isolated from the ethyl acetate extract (EtOAc) of the endophytic fungus Aspergillus terreus-F7 obtained from Hyptis suaveolens (L.) Poit. The extract and the compounds presented schistosomicidal activity against Schistosoma mansoni; at 100 µg/mL for EtOAc extract, 1297.3 µM for compound 1, 235.6 µM for compound 2, and 454.1 µM for compound 3, they killed 100% of the parasites after 72 h of treatment. Compounds 1, 2, and 3 exerted moderate leishmanicidal activity against Leishmania amazonensis (IC50 ranged from 23.7 to 78.6 µM). At 235.6 and 227.0 µM, compounds 2 and 3, respectively, scavenged 95.92 and 95.12% of the DPPH radical (2,2-diphenyl-1-picryl-hydrazyl), respectively. Regarding the cytotoxicity against the breast tumor cell lines MDA-MB-231 and MCF-7, compound 2 gave IC50 of 34.4 and 17.4 µM, respectively, while compound 3 afforded IC50 of 22.2 and 31.9 µM, respectively. At 117.6 µM, compound 2 inhibited the growth of and killed the pathogen Escherichia coli (ATCC 25922). Compounds 1, 2, and 3 displayed low toxicity against the normal line of human lung fibroblasts (GM07492A cells), with IC50 of 15.3 × 103, 3.4 × 103, and 5.8 × 103 µM, respectively. This is the first report on (i) the in vitro schistosomicidal and leishmanicidal activities of the EtOAc extract of A. terreus-F7 and compounds 1, 2, and 3; and (ii) the antitumor activity of compounds 2 and 3 against MDA-MB-231 and MCF-7 cells.


Subject(s)
Aspergillus/chemistry , Cyclopentanes/pharmacology , Furans/pharmacology , Hyptis/microbiology , Lactones/pharmacology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/isolation & purification , Animals , Anthelmintics/isolation & purification , Anthelmintics/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclopentanes/isolation & purification , Endophytes/metabolism , Furans/isolation & purification , Humans , Lactones/isolation & purification , Leishmania/drug effects , MCF-7 Cells , Schistosoma/drug effects
6.
J Immunol Methods ; 413: 32-44, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25064148

ABSTRACT

This study developed a remarkable methodological innovation (FC-ATE) which enables simultaneous detection of antibodies specific to the three evolutive forms of Trypanosoma cruzi: live amastigote (AMA), live trypomastigote (TRYPO), and fixed epimastigote (EPI) using a differential fluorescence staining as low (AMA), intermediate (TRYPO), and high (EPI). An outstanding performance (100%) was observed in the discrimination of the chagasic (CH) and non-chagasic (NCH) patients. In the applicability of FC-ATE in the diagnosis of Chagas disease, 100% of the CH samples presented positivity in the percentage of positive fluorescent parasites (PPFP) for all the three forms of T. cruzi. Moreover, 94% of the samples of NCH presented negative values of PPFP with AMA and TRYPO, and 88% with EPI. Samples from the NCH group with false-positive results were those belonging to the leishmaniasis patients. Considering the applicability of this technique in post-therapeutic monitoring of Chagas disease, 100% of non-treated (NT) and treated non-cured (TNC) samples were positive with the three T. cruzi evolutive forms, while a percentage of 100% from samples of the treated cured (TC) patients were negative with AMA, 93% with TRYPO and 96% with EPI. The comparison between FC-ATE and two other flow cytometric tests using the same samples of patients NT, TNC and TC showed that the three techniques presented different reactivities, although categorical correlation between the methodologies was observed. Taken together, the results obtained with the novel FC-ATE method have shown an outstanding performance in the diagnosis and post-therapeutic monitoring of Chagas disease.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/blood , Chagas Disease/diagnosis , Immunoglobulin G/blood , Life Cycle Stages/immunology , Trypanosoma cruzi/immunology , Adolescent , Adult , Aged , Case-Control Studies , Chagas Disease/drug therapy , Chagas Disease/immunology , Chagas Disease/parasitology , Child , Child, Preschool , Female , Flow Cytometry/methods , Humans , Infant , Male , Middle Aged , Prognosis , Sensitivity and Specificity , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/growth & development
7.
PLoS One ; 8(4): e61795, 2013.
Article in English | MEDLINE | ID: mdl-23637908

ABSTRACT

In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.


Subject(s)
Chagas Disease/prevention & control , Neuraminidase/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antibody Specificity/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Chagas Disease/immunology , Chagas Disease/mortality , Chagas Disease/parasitology , Epitopes, T-Lymphocyte/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Mice , Orthomyxoviridae/genetics , Orthomyxoviridae/immunology , Phenotype , Protozoan Vaccines/genetics , Spleen/immunology , Trypanosoma cruzi/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...